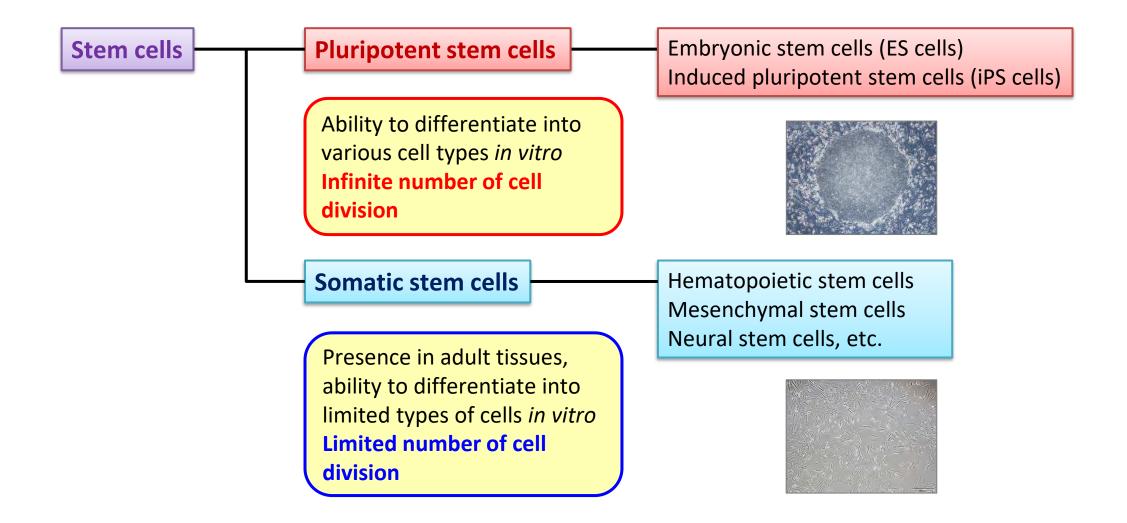


September 28th, 2023

13th Global Summit on Regulatory Science

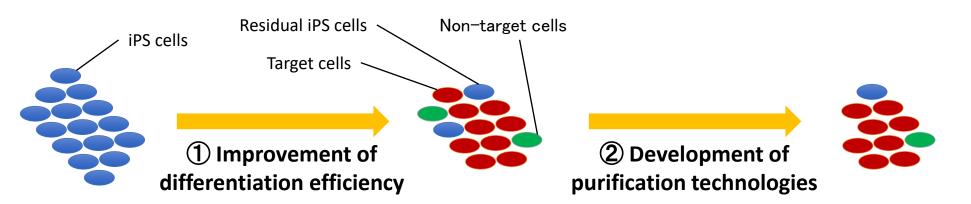

Safety assessment of cell-based therapeutic products derived from iPS cells

Satoshi YASUDA

National Institute of Health Sciences

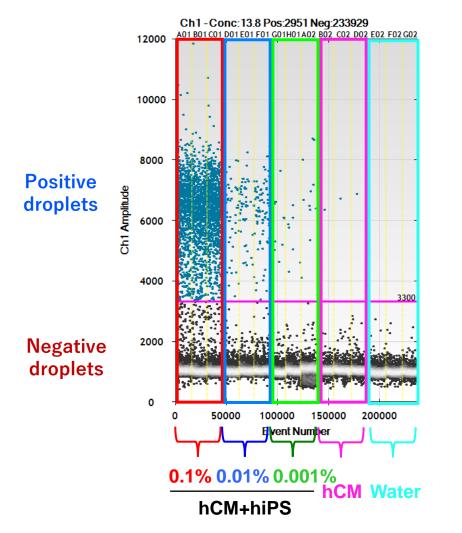
Stem cells used for cell therapy/regenerative medicine

Development of regenerative medicine using human iPS/ES cells

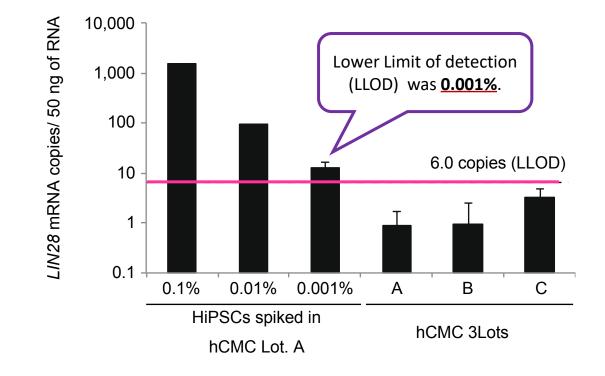


Cli	nical research and cl	inical trials using cells derived	from human iPS/ES cells approv	ved in Japan [Mar, 2023]		
Transplanted cells	Raw materials	Diseases	Facilities	Clinical research /clinical trials	Approval	First in human
Retinal Pigment Epithelium	Autologous iPS cells	Wet age-related macular degeneration	IBRI	Clinical research	2013	2014
Retinal Pigment Epithelium	Allogeneic iPS cells	Wet age-related macular degeneration	Kobe City Medical Center, etc.	Clinical research	2017	2017
Dopaminergic neuron	Allogeneic iPS cells	Parkinson's diseases	Kyoto University	Investigator-initiated trial	2018	2018
Platelets	Autologous iPS cells	Aplastic anemia	Kyoto University	Clinical research	2018	2019
Corneal epithelial cells	Allogeneic iPS cells	Limbal Stem Cell Deficiency	Osaka University	Clinical research	2019	2019
Hepatocytes	ES cells (Allogeneic)	Congenital urea cycle disorder	NCCHD	Investigator-initiated trial	2019	2019
Cardiomyocytes	Allogeneic iPS cells	Ischemic cardiomyopathy	Osaka University	Investigator-initiated trial	2019	2020
Neural progenitor cells	Allogeneic iPS cells	Spinal cord injury	Keio University, etc.	Clinical research	2019	2021
Retinal photoreceptor cells	Allogeneic iPS cells	Retinitis pigmentosa	Kobe City Eye Hospital	Clinical research	2020	2020
NKT cells	Allogeneic iPS cells	Relapsed/advanced head and neck cancer	Chiba University, RIKEN	Investigator-initiated trial	2020	2020
Cartilage cells	Allogeneic iPS cells	Knee cartilage injury	Kyoto University	Clinical research	2020	2021
Cardiomyocytes	Allogeneic iPS cells	Dilated cardiomyopathy	Keio University	Clinical research	2020	-
Retinal Pigment Epithelium	Allogeneic iPS cells	Retinal pigment epithelial insufficiency	Kobe City Eye Hospital	Clinical research	2021	2022
AntiGPC3-CAR NK cells	Allogeneic iPS cells	Ovary cancer	Kyoto University, NCC	Investigator-initiated trial	2021	2021
Corneal endothelial cells	Allogeneic iPS cells	Bullous keratopathy	Keio University	Clinical research	2021	2023
Platelets	Allogeneic iPS cells	Thrombocytopenia	Megakaryon, Kyoto University, CiRA-F	Sponsor-initiated trial	2021	2022
Cardiomyocytes	Allogeneic iPS cells	Ischemic heart diseases	Heartseed, Keio University	Sponsor-initiated trial	2021	2023

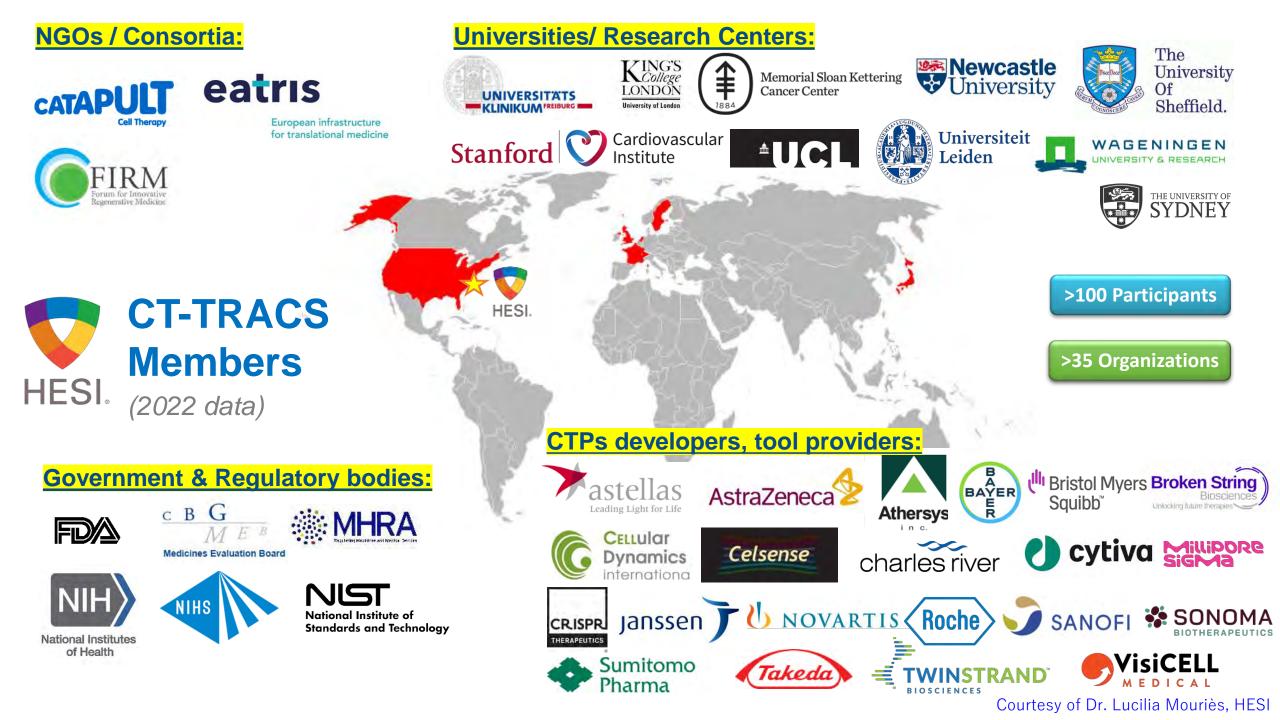
Safety and quality of cell therapy products derived from human iPS cells


- Since undifferentiated ES/iPS cells have the ability to form teratoma, residual ES/iPS cells have a potential risk of tumorigenicity.
- Tumorigenic transformed cells possibly appear, associated with cell processing.

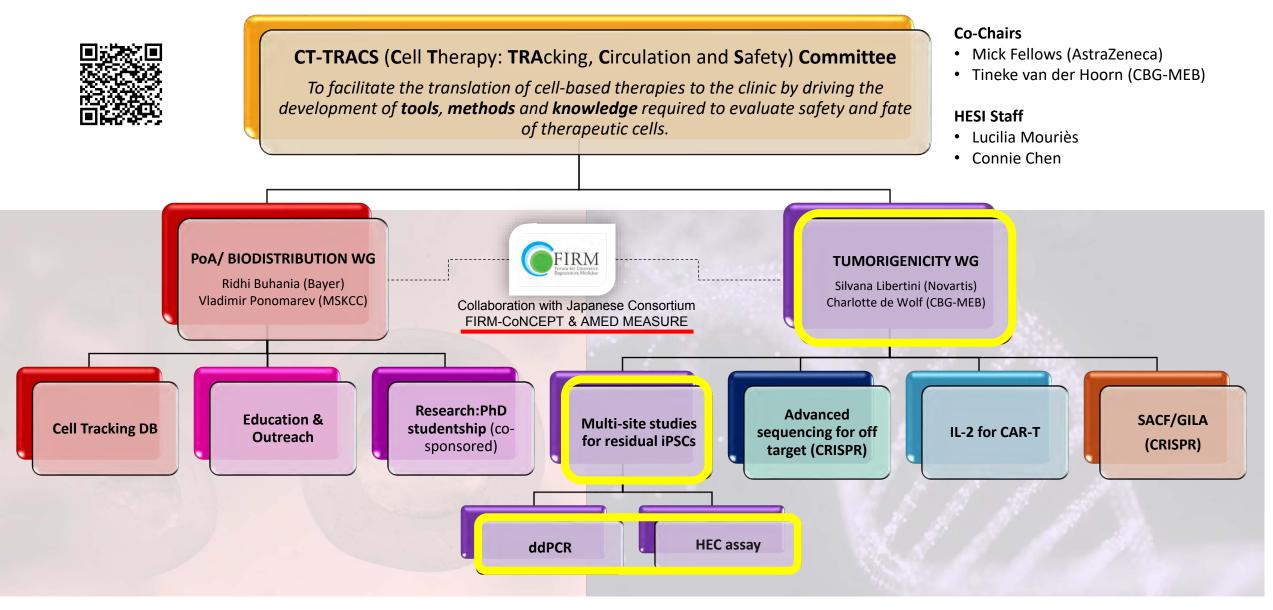
It needs to prevent contamination with residual undifferentiated ES/iPS cells and tumorigenic cells.


③ Testing methods to check removal/residue of undifferentiated ES/iPS cells and tumorigenic cells are essential for development of products.

Detection of LIN28A mRNA using droplet digital PCR (ddPCR) assay

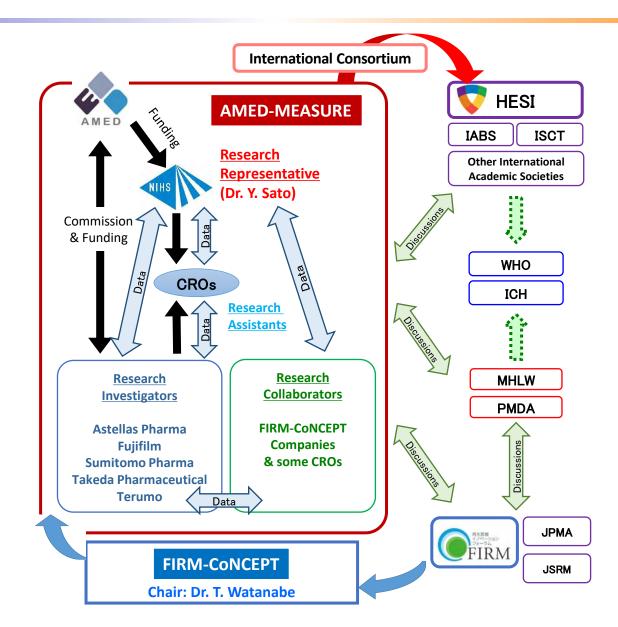


Kuroda et al., Regen Ther. 2015

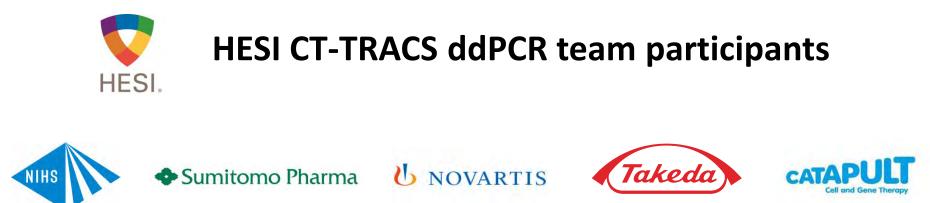

LIN28A copy number in primary cardiomyocytes spiked with iPS cells

To confirm validity of the testing methods, the variability among laboratories needs to be examined in multisite studies at the international level.

Health and Environmental Sciences Institute, www.hesiglobal.org



https://hesiglobal.org/cell-therapy-tracking-circulation-safety-ct-tracs/


Courtesy of Dr. Lucilia Mouriès, HESI

FIRM-CONCEPT & AMED-MEASURE

What is "MEASURE"?

AMED-supported Japanese **public-private partnership research** on standardization and validation of **methods for tumorigenicity assessment** of cell therapy products

International multi-site studies for validation of the ddPCR method to detect residual undifferentiated iPSCs in cell therapy products

- Using iPSC-derived differentiated cells (iCell cardiomyocytes, FCDI) and iPSCs (ChiPSC18, Takara Bio) for spiking experiments
- Selecting several target genes expressed in undifferentiated iPSCs but not in iPSC-derived CMs as markers with ddPCR analysis on top of LIN28A

ddPCR_Step-1

Objectives

To confirm the variance regarding ddPCR analytical process at multiple sites through using the same samples prepared at one site (NIHS).

Actions

- Purchase iPSC and iCell[®] (Cardiomyocyte)
- Prepare spiked cells
- Conduct preliminary studies to estimate as follows
 - condition to prepare spiked cells
 - spiked iPSC conc. range,
 - optimal biomarkers (>3) on top of LIN28.
- Deliver RNA samples isolated from spiked cells, human heart total RNA 3 lots, and probe & primer sets to each facility

Sumitomo Pharma

U NOVARTIS

Actions

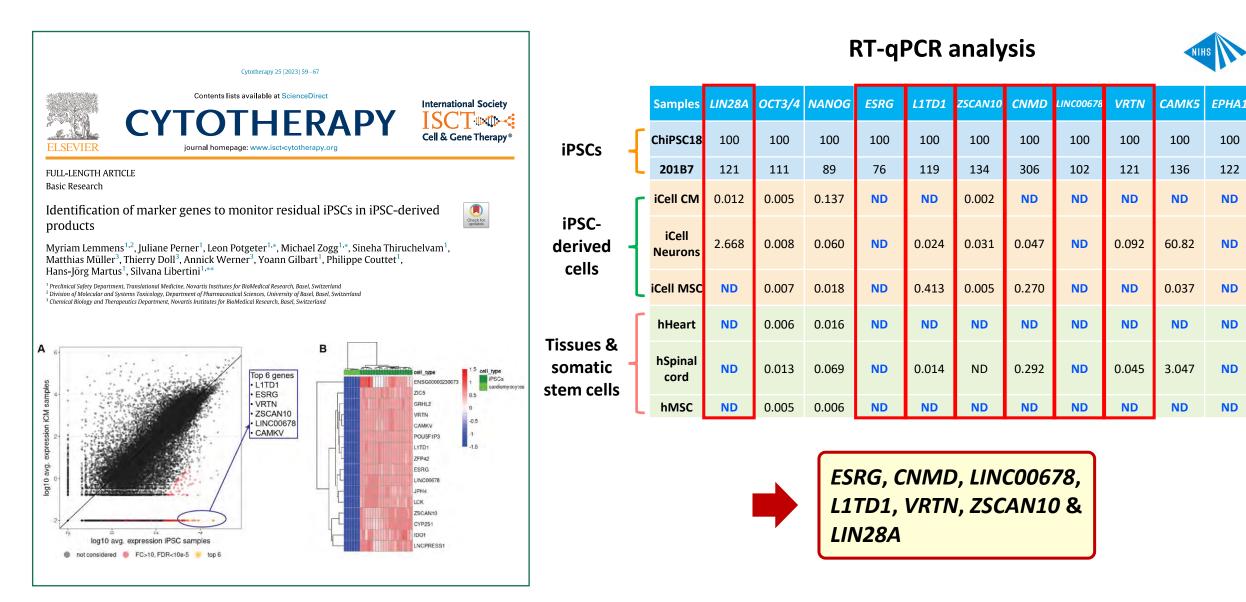
- Agree the number of biomarker
- Receive RNA samples isolated from spiked cells, human heart total RNA 3 lots, and probe & primer sets from NIHS
- Analyze samples prepared at NIHS based on the protocol
- Keep each probe & primer set for study-2

iPSC marker gene identification

100

122

ND


ND

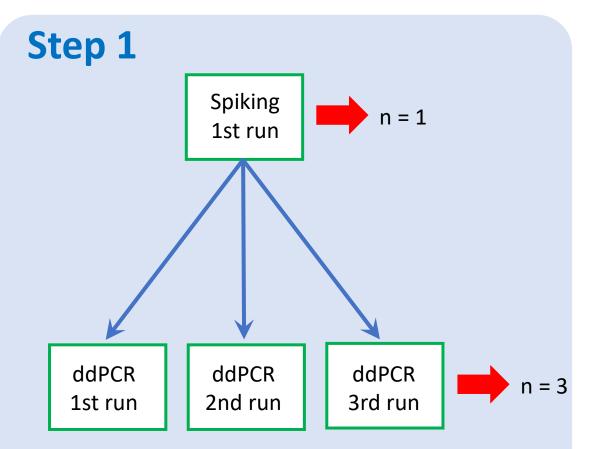
ND

ND

ND

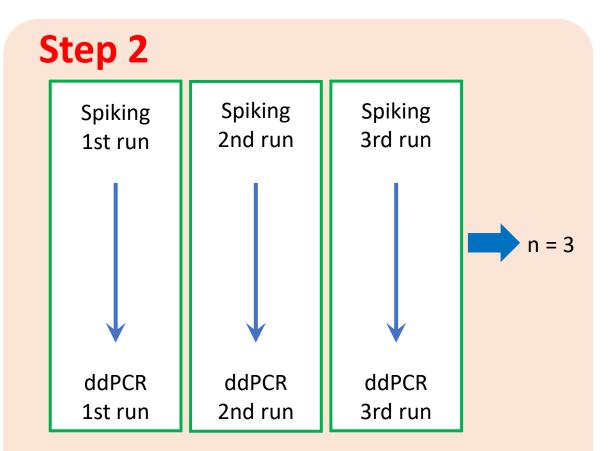
ND

Performance of ddPCR assay targeting iPSC marker genes

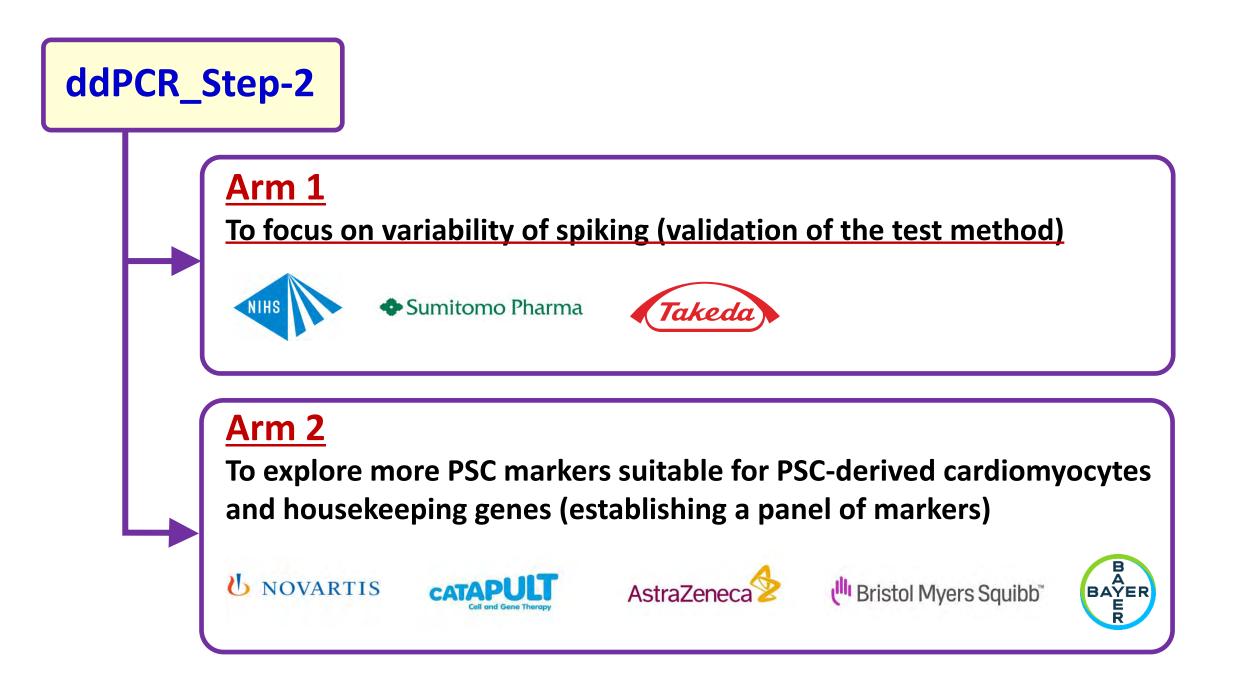

	CNMD	ESRG	LINC00678	LIN28A	L1TD1	VRTN	ZSCAN10
Relationship with iPSC standards	++	+++	+++	++	+++	+++	++
Relationship with spiked iPSC conc.	++	+++	+++	+++	++	+	++
Precision of spiked iPSCs	++	+++	++	+++	+++	+++	++
Limit of detection (LOD)	++	+++	+++	+++	+	+	++
Limit of quantification (LOQ)	++	+++	+++	+++	+	+	++
Signals of iCell CM as the negative control	++	+++	+++	+++	+	+	+++
Precision of positive control	++	++	++	+++	+++	++	++
Target abundance	+	+++	+	++	++	+	+
Overall score	15	23	20	22	16	13	15

ESRG, LINCO0678 and LIN28A were ranked as the top 3 marker genes.

	Re	peatability	CV	Reproducibility CV				
Gene name	ESRG	LINC00678	LIN28A	ESRG	LINC00678	LIN28A		
iCell CM 0.1%	4%	9%	12%	4%	9%	15%		
iCell CM 0.03%	7%	9%	9%	9%	10%	18%		
iCell CM 0.01%	7%	17%	13%	11%	17%	13%		
iCell CM 0.003%	10%	<u>23%</u>	11%	12%	<u>29%</u>	15%		
iCell CM 0.001%	11%	38%	29%	<u>14%</u>	38%	30%		
iCell CM 0.0003%	<u>29%</u>	65%	<u>19%</u>	47%	86%	<u>24%</u>		
iCell CM 0%	35%	79%	27%	79%	106%	27%		


 \leq 30% of coefficient of variation (CV) values are highlighted in blue or red.

To evaluate repeatability and reproducibility of sample preparation


Variation of 3 runs of ddPCR with the same samples was observed in Step-1 study.

Repeatability and reproducibility of sample preparation is not evaluated.

Variation of 3 runs of ddPCR measurement is known in Step-1 study. Therefore, one run of spiking should correspond to one run of ddPCR measurement.

Repeatability and reproducibility of sample preparation can be evaluated.

Variability regarding entire analytical process

	FCDC	Spiked iPSCs (%)				Spiked iPSCs (%)				Spiked iPSCs (%)		
	ESRG	0.01	0.003	0.001	LINC00678	0.01	0.003	0.001	LIN28A	0.01	0.003	0.001
iPSC spiking at each run	Repeatability CV	15.1%	32.7%	37.1%	Repeatability CV	21.1%	38.4%	38.4%	Repeatability CV	20.1%	27.8%	41.0%
	Reproducibility CV	47.8%	41.1%	45.0%	Reproducibility CV	55.9%	53.5%	51.6%	Reproducibility CV	44.5%	32.5%	56.6%
Using the same samples	Repeatability CV_step1	6.8%	9.6%	10.8%	Repeatability CV_step1	16.7%	23.4%	37.7%	Repeatability CV_step1	12.9%	11.0%	29.4%
	Reproducibility CV_step1	10.6%	12.2%	14.2%	Reproducibility CV_step1	16.7%	28.8%	37.7%	Reproducibility CV_step1	12.9%	15.0%	29.8%

- iPSC spiking at each run in 3 facilities increased CV values of repeatability and reproducibility.
- Repeatability CV showed dependency of iPSC doses, whereas reproducibility CV was relatively constant in any doses.
- These results suggest that contribution of between laboratory variance to reproducibility in Step 2 is high compared to Step 1 study.

Summary

- In Step 1 study, different concentrations of iPSCs were spiked into iPSC-derived cardiomyocytes at 1 site, and the same RNA samples were analyzed by ddPCR at multiple sites.
- The ddPCR assay targeting to *ESRG*, *LINCOO678*, and *LIN28A* detected undifferentiated iPSCs in CTPs with LOD of 0.001%, 0.003% and 0.0003%, respectively, and offers a highly sensitive and robust detection.
- In Step 2 study, the entire process, including spiking, was conducted at each facility. The CV values of repeatability and reproducibility in Step 2 study were consistently higher compared to Step 1 study.
- The main contribution to variability between laboratories is the iPSC-spiking procedure, and not the ddPCR measurement.
- The validated ddPCR assay would be generally applicable for tumorigenicity evaluation of iPSC-derived CTPs with appropriate marker genes.

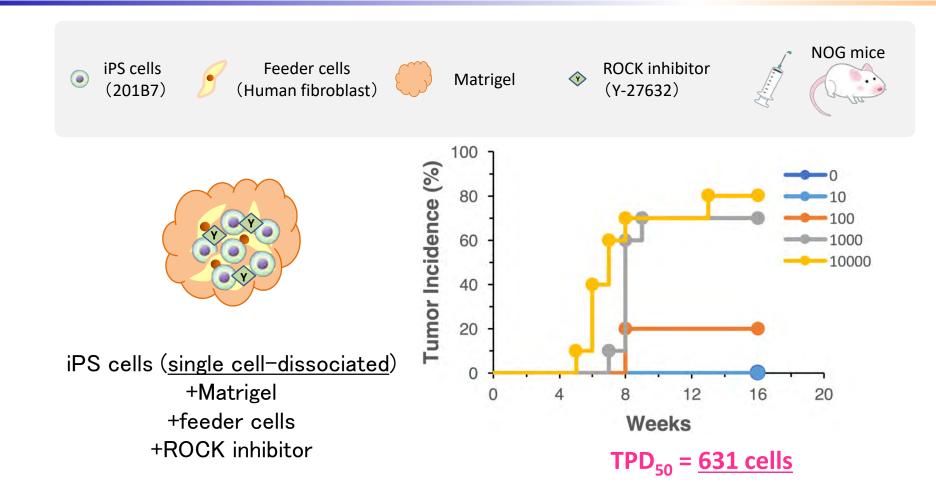
Acknowledgements

National Institute of Health Sciences

Yoji Sato Takuya Kuroda Satoko Matsuyama Takumi Miura Rumi Sawada Ken Kono Shinji Kusakawa Keiko Tano Takamasa Hirai

FIRM-CoNCEPT

Kiyoko Bando Orie Terai Koki Fujimori Takeshi Watanabe Kosuke Harada Hiroto Bando



HESI CT-TRACS Tumorigenicity WG ddPCR Team

Marianne P. Henry Dragos Marginean David Moss Nicole Nicholas Myriam Lemmens Silvana Libertini Lucilia Pereira Mouriès Connie Chen

Supplementary

Tumorgenicity testing using NOG mice subcutaneously transplanted with iPSCs

When iPS cells were most efficiently engrafted in severely immunodeficient mice, TPD₅₀ was 631 cells. If 10^6 and 10^7 cells are injected, TPD₅₀ = 631 would correspond to 0.06% and 0.006%, respectively.